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Abstract

The effect of an external magnetic field on the fracture toughness of magnetostrictive materials has been investigated

by determining the local stress fields around the tip of a very slender elliptical flaw embedded in an infinite magne-

tostrictive plane subjected to magnetic loading, based on the assumption of linear magnetization. In this paper, the

above-mentioned analytical approach is extended to develop a small-scale magnetic-yielding model. The magnetic

saturation zone is constructed and the distributions of magnetic field and magnetization are obtained around the tip of

a slender elliptical crack. Based on the complex potential theory, the stress field is obtained in the vicinity of the tip of

the slender elliptical crack by implementing the continuity conditions of displacement and resultant force at the

interface between the magnetic saturation and magnetoelastic zones. The stress fields near the tip of the slender elliptical

crack are obtained for two kinds of soft ferromagnetic materials each with a small induction magnetostrictive modulus.

The theoretical results obtained show that the stresses in the neighborhood of a crack-tip are finite even when the

elliptical crack reduces to a sharp crack, and are much smaller than the yield stress or the nominal fracture stress of the

material. This suggests that, generally, the magnetic field has no obvious effects on the apparent fracture toughness of

soft ferromagnetic materials, which is in agreement with the existing experimental results published in the existing

literature. In addition, the theoretical analysis illustrates that no crack is magnetically impermeable, and the corre-

sponding boundary conditions are inappropriate for fracture analysis of soft ferromagnetic materials.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The soft ferromagnetic materials (SFMs) have been widely used in engineering. More and more

researchers have paid attention to the mechanical properties of the SFMs subjected to external magnetic
fields (Moon and Pao, 1968; Pao and Yeh, 1973; Van De Ven, 1978; Zhou and Zheng, 1996; Yang et al.,
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1999; Zhou and Miya, 1999). The effect of magnetic field on the apparent toughness of SFMs has been

investigated by some researchers using theoretical (Shindo, 1977, 1978, 1982, 1983, 1985; ANG, 1989;

Shindo and Horiguchi, 1991; Sabir and Maugin, 1996; Bagdasarian and Hasanian, 2000) and experimental

techniques (Clatterbuck et al., 2000; Wan et al., 2003b). In the past two decades, the manufacturing
capability of giant magnetostrictive materials has been greatly improved. Many kinds of giant magneto-

strictive compounds consisting of rare earth elements have been fabricated with high quality and at rela-

tively low cost, which makes it feasible for engineering application of magnetostrictive materials. The

distinct superiority of the magnetostrictive materials over the ordinary ferromagnets is their significant

magnetostriction (Clark, 1980). Therefore, it is a known fact that the non-linear deformation and fracture

induced by magnetostriction should be properly accounted for in the study of magnetostrictive materials

subjected to external magnetic-mechanical loading. In the previous work of the authors (Wan, 2002; Wan

et al., 2003c), linear magnetization and isotropic constitutive relations for magnetostrictive materials were
adopted to investigate the deformation and fracture behavior of infinite soft ferromagnetic solids with an

elliptical crack. The magnetic body force and the magnetic traction induced by surface magnetization were

taken into account. For several kinds of specific soft ferromagnetic materials, the effect of a magnetic field

on the apparent fracture toughness was analyzed.

Under a low magnetic field, the magneto-strain varies linearly with the square of magnetic field. When

the external magnetic field is very high, the strain induced by the magnetostrictive effect is likely to saturate

(Clark, 1980; Wan et al., 2003a). For a soft magnetostrictive material with a crack-like flaw subjected to an

external magnetic field, saturation of magnetization tends to occur near the tip of the crack-like flaw due to
the concentration of magnetic field. Thus, in this paper, an attempt is made to determine the stress field

around the tip of a crack-like flaw by adopting a model of perfect magnetization saturation based on the

analysis presented in Wan et al. (2003c), in which linear magnetization was a prerequisite, and small

deformation prevails and the assumption that deformation exerts negligibly small disturbance to the dis-

tribution of magnetic field is adopted. In the present study, we also specify the case where electric current is

absent and the external magnetic field is quasi-static. The magnetization saturation zone is assumed to be a

cylinder. By using the continuity conditions of displacement and resultant force along the interface between

the saturation and linear magnetization zones, the stress solution is obtained based on the classical complex
potential method (Muskhelishvili, 1963). This method has been successfully employed to determine the

stress fields around the edge of an electric pole in the electrostrictive material with a cylindrical region of

perfect polarization saturation (Hao et al., 1996). However, when the problem of crack-like flaw is studied,

it should be noted that the intensity of the magnetic field varies with the change of the width of the crack-

like flaw (i.e., the concentration of magnetic field increases as the slender elliptical flaw reduces to a sharp

crack). Thus, the size and location of the saturation zone would be changed. Furthermore, the boundary

conditions of the crack surface must be taken into consideration to obtain the final stress fields inside the

saturation zone.
2. The magnetization saturation zone

Many soft ferromagnetic materials, for example, the soft ferromagnetic steels and the series of man-

ganese–zinc ferrites, are generally susceptible to magnetization under magnetic field. These materials have

large magnetostriction and very small energy loss due to the narrow hysteresis loops. The constitutive law

can be approximated as isotropic, apparent magnetostrictive and history-independent due to very small

energy loss (refer to Fig. 1). Under an external magnetic field, a ferromagnetic crystal exhibits length

variation, both in the direction of the magnetic field (i.e., longitudinal direction) and perpendicular to it

(i.e., transverse direction). This is termed as magnetostriction. The magneto-strain of SFMs is related to the
magnitude of magnetic field. Generally, the strain is a quadratic function of the magnetic field when the
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Fig. 1. The perfect saturation model: (a) magnetostrictive curve and (b) magnetization curve.
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magnetic field is not very strong. In this case the standard square model for the constitutive relation is valid
(Wan et al., 2003a). When the external magnetic field becomes very intense (refer to Fig. 1(a)), the magneto-

strain approaches the saturation point, es, which is generally deemed as a material constant. Fig. 1(b) shows

the magnetization curve of a typical soft ferromagnetic material, where Hs refers to the magnetic field at

which magnetization of the material is saturated, and Ms is the corresponding saturated magnetization.

When the magnetic field is not very strong, the magnetization increases almost linearly with increasing

external magnetic field. As the magnetic field becomes very intense, the magnetization reaches a saturation

point, Ms, which is also a material constant.

In the present study, the external magnetic field is assumed to be smaller than Hs, but the magnetic field
near the crack-tip may be higher than Hs due to the concentration effect. Therefore, the material is still

linearly magnetic, except for a small volume around the tip of the elliptical crack. This is so-called the

small-scale magnetic-yielding condition. For simplicity, a reasonable assumption of perfect saturation of

magnetization (refer to the dashed lines in Fig. 1) is made in the present study. This is to say the major part

of the material is linearly magnetized with respect to the magnetic field that is lower than the saturation

point. Based on the above-mentioned assumption, the material has a constant magneto-strain, es, in the

small region around the tip of the slender elliptical crack.

In the linearly magnetized region, the distribution of the magnetic field in the neighborhood of the crack-
tip has been obtained by Wan et al. (2003c) as follows:
H1 ¼ � KHffiffiffiffiffiffiffi
2pr

p sin
h
2
; ð1aÞ

H2 ¼
KHffiffiffiffiffiffiffi
2pr

p cos
h
2
; ð1bÞ
where H1 and H2 are the x and y components of the magnetic field vector, respectively (refer to Fig. 2); and

KH is the magnetic intensity factor. The magnitude of the magnetic field vector is
H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH1Þ2 þ ðH2Þ2

q
: ð2Þ
This distribution is approximately valid in a hollow cylinder whose inner radius is that of the saturated

cylinder, and whose outer radius is much smaller than the crack length (refer to Fig. 2). The characteristic

length, rs, can be obtained by letting H ¼ Hs, i.e.,
rs ¼
1

2p
KH

Hs

� �2

: ð3Þ



1o

2
o x

l

0l

d

3o
θ
r

ρ

α

ω

γ

y

Fig. 2. The size and position of the magnetization saturation zone.

6132 Y.P. Wan et al. / International Journal of Solids and Structures 41 (2004) 6129–6146
Since the magnetic flux can neither be stopped nor disappear in the magnetic material, the segment length

of the saturation zone ahead of the crack-tip can be estimated by means of the following expression:
l0 ¼
1

Ms

Z rs

0

ðl1HÞdr; ð4Þ
where Ms ¼ v1Hs is the saturation magnetization of the material, v1 is the susceptibility of the material; l1 is

the permeability of the material; and r is the distance away from the crack-tip along the crack face. The

length of the saturation segment, l0, can be easily estimated as l0 ¼ 2rs. For the slender elliptical crack

whose minor semi-axis is not zero, i.e., b 6¼ 0, the magnetic field at the tip of a slender elliptical crack must

be bounded. The distribution of the magnetic field along the major axis has been predicted by Wan et al.

(2003c) as follows:
H ¼ 1

2

að1þ D1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ar þ b2

p H1; ð5Þ
where r is the distance away from the tip and along the major semi-axis of the slender elliptical crack, H1 is

the remotely applied magnetic field and D1 can be expressed as
D1 ¼
b
a

l1
l2
� 1

b
a

l1
l2
þ 1

; ð6Þ
where l1 and l2 are the permeability of the materials outside and inside the slender elliptical crack,

respectively; b and a are the minor and major semi-axes of the elliptical crack, respectively. The magnetic

field intensity factor can be expressed as
KH ¼ 1

2
ð1þ D1Þ

ffiffiffiffiffiffi
pa

p
H1: ð7Þ
Thus, Eq. (5) becomes
H ¼ KH

ffiffiffi
a
p

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ar þ b2
p : ð8Þ
In terms of Eq. (8), the estimated length of the saturation segment along the major axis of the slender crack

is given by (refer to Fig. 2):
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l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2rsÞ2 þ

2rs
a

b2
r

�
ffiffiffiffiffiffiffiffiffi
2rs
a

b

r
: ð9Þ
The length of the saturation segment behind the tip (denoted as d) can be obtained by letting d ¼ l0 � l.
Generally, soft ferromagnetic materials have a large permeability. When the medium inside the crack is air
or vacuum, l1 � l2. Thus, the following condition generally prevails for a slender elliptical crack:
H1=Hs

b=aþ l2=l1

� 1: ð10aÞ
Based on Eqs. (3) and (7), Eq. (10a) can be rewritten as
bffiffiffiffiffiffiffiffiffi
2ars

p � 1: ð10bÞ
Hence, the expressions of d and l are reduced to
d ¼ b

ffiffiffiffiffiffi
2rs
a

r
; ð11aÞ

l ¼ 2rs � b

ffiffiffiffiffiffi
2rs
a

r
: ð11bÞ
It can be verified that d � l for a slender elliptical flaw where b ! 0 but b 6¼ 0. Only when the slender

elliptical flaw reduces to a sharp crack, i.e., b ¼ 0, then d ¼ 0. For a general case where the minor axis of the

elliptical flaw is not equal to zero, i.e., b 6¼ 0, d > 0, which implies that the saturation cylinder must intersect
the slender elliptical crack at two symmetrical points (refer to Fig. 3).
3. The magnetic field and magnetization in the saturation zone

With the assumption of linear magnetization, the distribution of the magnetic field near the tip of a

slender elliptical crack (Wan et al., 2003c) is as follows:
Hr ¼
KHffiffiffiffiffiffiffi
2pr

p sin
h
2
; ð12aÞ

Hh ¼
KHffiffiffiffiffiffiffi
2pr

p cos
h
2
; ð12bÞ
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Fig. 3. The distribution of the magnetic field (a) and magnetization in the saturation zone (b).
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where r, h are the polar coordinates with origin o2 (refer to Fig. 2). The corresponding potential function of

this magnetic field is given by
U ¼ �KH

ffiffiffiffiffi
2r
p

r
sin

h
2
: ð13Þ
At the interface between the cylindrical saturation region and the outside magnetoelastic area, where r ¼ rs
and h ¼ 2a, in which a is the polar angle of the polar coordinates with origin o1 (refer to Fig. 2), the

magnetic potential becomes
U ¼ �KH

ffiffiffiffiffiffi
2rs
p

r
sin a: ð14Þ
The general relations between the magnetic field and its scalar potential can be expressed as
Hq ¼ � oU
oq

; ð15aÞ

Ha ¼ � 1

q
oU
oa

; ð15bÞ
where q, a are the polar coordinates centered at o1 (refer to Fig. 2). The magnetic field inside the cylindrical

saturation zone can be obtained by substituting Eq. (14) into Eqs. (15a) and (15b) as follows:
Hq ¼ 0; ð16aÞ

Ha ¼
KH

q

ffiffiffiffiffiffi
2rs
p

r
cos a: ð16bÞ
Obviously, the magnetic field becomes singular at point o1 at which q ¼ 0. As pointed out in Wan et al.
(2003c), the magnetic field inside the elliptical crack is homogeneous and no singularity exists. Since point

o1 is located in the slender elliptical crack, singularity does not really exist. The intersecting points of the

boundary of the cylindrical saturation zone and that of the elliptical crack can be analytically obtained

through solving the simultaneous equations describing the said zone and crack. Since the saturation zone is

symmetrical with respect to the x-coordinate, the upper portion can be selected as the representative part

for simplicity. The polar angle of the intersecting point, a0, is determined as follows:
a0 ¼
1

2
arccos

b
a ðcþ rsÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2 � a2 þ 2crs þ a2

b2 r
2
s

q
a
b � b

a

� �
rs

: ð17Þ
Therefore, the saturated region can be expressed as jaj6 a0 in the coordinate system centered at o1, where
jaj represents the absolute value of the polar angle a. The magnetic field on the surface of the slender

elliptical crack within the region, jaj6 a0, can be obtained as follows:
Ha ¼ KH

ffiffiffiffiffiffi
2rs
p

r b2

a2 cos
2 aþ sin2 a

� �
cos a

�c b2
a2 cos aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 b2

a2 cos
2 aþ sin2 a

� �
� c2 b2

a2 sin
2 a

q ; ð18Þ
where c ¼ a� d (refer to Fig. 2). The polar component, Hq, of the magnetic field equals to zero. Therefore,

the magnetic field along the surface of the slender elliptical crack is bounded. The direction of magneti-

zation coincides with that of magnetic field, and its magnitude equals to Ms. Thus,
Mq ¼ 0; ð19aÞ
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Ma ¼ Ms; ð19bÞ

where Ms is saturation magnetization, which has been defined above. From the above formulae, it can be

seen that the magnetic potential is continuous on the interface between the cylindrical saturation region and

the outside area, and there is no jump of magnetic field across the interface. In accordance with the

magnetic force theory developed by Brown Jr. (1966), there is no surface magnetization across the cylin-

drical region and no surface magnetic force exists as well.
4. The stress field around the tip of an elliptical crack

Generally speaking, the saturation magneto-strain, es, for a soft ferromagnetic material is a constant,

which can be taken as an eigenstrain induced by the magnetic field in the saturation zone. Since the

cylindrical saturation zone can be considered as an inclusion with an eigenstrain, the stress field of this

problem can be obtained by solving a linear elastic inclusion problem, plus a pure elastic problem with

tractions acting on the surface of an elliptical crack.

4.1. The continuity conditions of the cylindrical saturation region

Similar to the approach adopted by Hao et al. (1996) to determine the electrostrictive stress field in a

saturation cylinder around an electric edge, the stress field induced by the misfit strain due to perfect

saturation inside the cylindrical zone can be obtained by using the complex potential method and imple-

menting the continuity conditions of displacement and resultant force on the boundary of the cylindrical
saturation region. The magnetization in the afore-mentioned region induces a stress-free deformation. The

magneto-strains are given by
eq ¼ ð1þ mÞm21M2
s ; ð20aÞ

ea ¼ ðm11 þ mm21ÞM2
s ; ð20bÞ

eqa ¼ 0: ð20cÞ

For the small deformation case, the geometric equations in the polar coordinates can be expressed as
eq ¼
ouq
oq

; ð21aÞ

ea ¼
1

q
oua
oa

þ uq
q
; ð21bÞ

eqa ¼
1

2

1

q
ouq
oa

�
þ oua

oq
� ua

q

�
: ð21cÞ
Obviously, the displacements can be obtained by integrating Eqs. (21a)–(21c). The displacements are

transformed from polar to rectangular coordinates by
u1 þ u2i ¼ eaiðuq þ uaiÞ; ð22Þ

where i ¼

ffiffiffiffiffiffiffi
�1

p
; u1 and u2 are the displacement components in the rectangular coordinates. Note that the

rigid body displacements correspond to the stress-free and strain-free states and, therefore, can be dis-
carded. Thus, the displacements on the interface between the cylindrical region and the outside area satisfy

the following form:
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2Gðu1 þ iu2Þ ¼ Grsð1þ eh�iÞ½2eq þ iðea � eqÞh�; ð23Þ

where G is the shear modulus of the material. Let /1 and w1 represent the complex potentials of the induced

stress field in the saturation zone; and /2, w2 denote the potentials in the linear magnetization area. On the

boundary of the cylindrical saturation zone, the continuity conditions of the displacements and resultant

force are given by
ð3� 4mÞ/1 � t/0
1 � w1 þ Grsð1þ ehiÞ½2eq þ iðea � eqÞh�

¼ ð3� 4mÞ/2 � t/0
2 � w2 þ

ffiffiffiffiffiffiffiffiffi
2ars

p
p1 e

h
2
i

�
þ p2 e

�h
2
i þ p3 e

3h
2
i
�
þ p4 eh�i þ p5hi; ð24aÞ

/1 þ t/0
1 þ w1 ¼ /2 þ t/0

2 þ w2 þ
ffiffiffiffiffiffiffiffiffi
2ars

p
q1 e

h
2
i

�
þ q2 e

�h
2
i þ q3 e

3h
2
i
�
þ q4 eh�i þ q5; ð24bÞ
where t ¼ rs eh�i is a point on the cylindrical boundary. The coefficients, pi ði ¼ 1–5Þ and qi ði ¼ 1–5Þ, are
given in Appendix A. The jump conditions of the complex potentials across the cylindrical boundary can be

derived from Eqs. (24a) and (24b), i.e.,
/1 � /2 ¼ D1hiþ D2 e
h�i þ D3he

h�iiþ D4 e
h
2
�i þ D5 e

�h
2
�i þ D6 e

3h
2
�i þ D7; ð25aÞ

w1 � w2 ¼ A1hiþ A2 e
�h

2
i þ A3 e

�3h
2
i þ A4 e

�5h
2
i þ A5 e

h
2
i þ A6 e

�h�i þ A7 e
�2h�i þ A8he

�h�iiþ A9; ð25bÞ

where the coefficients Di ði ¼ 1–7Þ and Ai ði ¼ 1–9Þ are given in Appendix B. To separate the complex

potentials from the jump conditions (25a) and (25b), the following three conditions should be satisfied (Hao

et al., 1996): (1) the displacements and the resultant force are continuous across the cylindrical boundary;

(2) z ¼ �rs is a virtual singularity point, at which the magnetic field and the stresses, and therefore, the

complex potentials, /1, w1, are singular. Thus, /1, w1 are analytic in the whole saturation zone except for
z ¼ �rs; (3) there is no stress at infinity, which means that /2, w2 vanish at infinity. The complex potentials

in Eqs. (25a) and (25b) can be separated distinctively in terms of the above three conditions and can be

further extended into the saturation zone and the linear magnetization region based on the method adopted

by Hao et al. (1996). The complex potentials with respect to the coordinates centered at o2 are given as

follows:
/1ðzÞ ¼ D1 ln
zþ rs
rs

þ D2

z
rs
þ D3

z
rs

ln
zþ rs
rs

þ D4

ffiffiffiffi
z
rs

r
þ D6

z
rs

ffiffiffiffi
z
rs

r
þ D7 � D3; ð26aÞ

/2ðzÞ ¼ �D1 ln
z

zþ rs
� D3 1

�
þ z
rs

ln
z

zþ rs

�
� D5

ffiffiffiffi
rs
z

r
; ð26bÞ

w1ðzÞ ¼ A1 ln
zþ rs
rs

þ A5

ffiffiffiffi
z
rs

r
þ A9; ð26cÞ

w2ðzÞ ¼ �A1 ln
z

zþ rs
� A2

ffiffiffiffi
rs
z

r�
þ A3

rs
z

ffiffiffiffi
rs
z

r
þ A4

rs
z

� �2
ffiffiffiffi
rs
z

r 	
� A6

rs
z
� A7

rs
z

� �2

� A8

rs
z
ln

z
rs
: ð26dÞ
The stress field can be estimated by means of the complex potentials for the saturation and the linear
magnetization zones. In the neighborhood of the tip of the slender elliptical crack (x ! 0),

z ¼ �rs þ d þ xeci, and the stress fields are in the following form:
r22 þ r11

2
¼ 2Re

D1

d þ xeci

�
þ D3

rs

d � rs
d þ xeci

�
þ ln

d þ xeci

rs

�	
; ð27aÞ
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r22 � r11

2
þ ir12 ¼ ðd � rsÞ

D3 � D1

d þ xecið Þ2

"
þ D3

rs

1

d þ xeci

#
þ A1

d þ xeci
; ð27bÞ
where x and c are the polar radius and angle of the polar coordinates centered at o3, respectively. Reð Þ
represents the real part of the complex. The hoop stress along the major axis (c ¼ 0) ahead of the tip is
rð1Þ
22 ¼ A1 þ 2D1 � 3D3

d þ x
þ 3

D3

rs

d
d þ x

þ ðrs � dÞðD1 � D3Þ
ðd þ xÞ2

þ 2
D3

rs
ln
d þ x
rs

: ð28Þ
4.2. An elastic problem with tractions acting on the surface of the elliptical crack

In order to obtain the final solution of the stress field, the solution of a purely elastic problem should be

added, by inverting the tractions on the surface of the elliptical crack, to that obtained in the above sub-

section. It is assumed that the two magnetization zones, which are located at the tips of the slender elliptical

crack, do not interact with each other since the size of the magnetization zone is much smaller than the

length of the major axis in the small-scale magnetic-yielding model. The tractions on the surface of the
slender elliptical crack can be estimated using the stress field obtained in the above subsection. It can be

verified that the stress field in the vicinity of the origin, o1, derived using the complex potentials /1, w1 is

identical to that obtained using /2, w2. By substituting the complex potentials /1, w1 into the stress Eqs.

(A.1) and (A.2) in Appendix A, the stress field in the neighborhood of the origin, o1, can be obtained as

follows:
ðr11Þ1 ¼ � rsðD1 � D3Þ
q2

cos 2a; ð29aÞ

ðr22Þ1 ¼
rsðD1 � D3Þ

q2
cos 2a; ð29bÞ

ðr12Þ1 ¼ � rsðD1 � D3Þ
q2

sin 2a; ð29cÞ
where q and a are the polar radius and angle of the coordinates centered at o1, respectively. ðrabÞ1 represent
the stress components with respect to the coordinates centered at o1, which can be transformed into that

centered at o by (refer to Fig. 2)
x ¼ x1 þ c; y ¼ y1; ð30Þ
where x and y are the rectangular coordinates centered at o, and x1 and y1 are those centered at o1. The stress
field in Eq. (29) can be expressed in terms of the coordinates with origin o
r11 ¼ �rsðD1 � D3Þ
ðx� cÞ2 � y2

½ðx� cÞ2 þ y2�2
; ð31aÞ

r22 ¼ rsðD1 � D3Þ
ðx� cÞ2 � y2

½ðx� cÞ2 þ y2�2
; ð31bÞ

r12 ¼ �rsðD1 � D3Þ
2ðx� cÞy

½ðx� cÞ2 þ y2�2
: ð31cÞ
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The tractions acting on the inner surface of the slender elliptical crack (the side with its outward normal

pointing into the ellipse) are
X ¼ �ðnxÞ1ðr11Þ1 � ðnyÞ1ðr12Þ1; ð32aÞ

Y ¼ �ðnxÞ1ðr12Þ1 � ðnyÞ1ðr22Þ1; ð32bÞ
where X and Y are the traction components along the ellipse. ðnaÞ1 represents the components of the unit

outward normal of the ellipse with respect to the coordinate system with origin o1. The stress field near the

elliptical crack can be obtained by employing the classical method of complex potential (Muskhelishvili,

1963). In order to employ the formula provided in Muskhelishvili (1963), the tractions in Eq. (32) are

further transformed to the coordinate system with origin o (refer to Fig. 2). Since the exerted tractions are

of the same magnitude as those in Eq. (32) but in opposite direction, in the coordinate system with origin o,
the exerted tractions acting on the inner surface of the ellipse are
X ¼ nxr11 þ nyr12; ð33aÞ

Y ¼ nxr12 þ nyr22; ð33bÞ
where na represents the components of the unit outward normal of the ellipse in the coordinate system

centered at o; rab are the stress components in the same coordinate system. In accordance with the complex

potential theory (Muskhelishvili, 1963), the following equation can be written:
f ¼
Z

ðX þ iY Þds: ð34Þ
By using the components, nx ¼ dy=ds, ny ¼ �dx=ds, where ds is an infinitesimal arc, the tractions can be

expressed as
f ¼
Z

½r11 dy � r12 dxþ iðr12 dy � r22 dxÞ�: ð35Þ
Substituting Eqs. (31a)–(31c) into Eq. (35) renders
f ¼ rsðD1 � D3Þ
Z ½ðx� cÞ2 � y2�ð�i dx� dyÞ þ ½2ðx� cÞy�ðdx� i dyÞ

½ðx� cÞ2 þ y2�2
: ð36Þ
By using x ¼ 1
2
ðzþ �zÞ, y ¼ 1

2i ðz� �zÞ and performing integration, Eq. (36) becomes
f ¼ i
rsðD1 � D3Þ

�z� c

�
� C0

	
; ð37Þ
where C0 is a constant that depends on the starting point of the integration contour. It can be seen that the

function in Eq. (37) is single-valued and analytic, which implies that integration of the tractions along a

contour equals zero, and hence, the resultant traction vanishes on a closed integration contour. Note that

the tractions are self-balanced. The classical complex potential theory (Muskhelishvili, 1963) can be applied

to an infinite plane elastic problem with an elliptical crack, where a self-balanced traction is exerted on the

elliptical surface and no mechanical loads are applied at infinity. The conformal mapping function,
z ¼ wðfÞ, is selected such that the domain in the physical plane outside the elliptical flaw is mapped into the

area outside the unit circle of the mapping plane, i.e.,
z ¼ wðfÞ ¼ Rðfþ mf�1Þ; ð38Þ
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where z, and f are the complex variables in the physical plane and the mapping plane, respectively, and

R ¼ ðaþ bÞ=2, m ¼ ða� bÞ=ðaþ bÞ, z ¼ xþ iy, f ¼ nþ ig. The complex potentials are obtained in the

physical plane (f) as follows:
/ðfÞ ¼ 0; ð39aÞ

wðfÞ ¼ �rsðD1 � D3Þ
Rða1 � a2Þ

a1
a1 � f

�
� a2
a2 � f

�
; ð39bÞ
in which
a1 ¼
a� d þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ad � b2 � d2

p

aþ b
; ð40aÞ

a2 ¼
a� d � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ad � b2 � d2

p

aþ b
; ð40bÞ
where i ¼
ffiffiffiffiffiffiffi
�1

p
. The stresses are obtained from Eqs. (A.1) and (A.2) in Appendix A
r22 þ r11 ¼ 0; ð41aÞ

r22 � r11 þ 2ir12 ¼ � 2rsðD1 � D3Þ
R2

f2

a1a2 � ða1 þ a2Þfþ f2

 �2 : ð41bÞ
With the inverse mapping function
f ¼ zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2 þ b2

p

aþ b
; ð42Þ
the stresses in Eqs. (41a) and (41b) can be re-expressed in the physical plane. By substituting z ¼ aþ x into

Eq. (42), and then into Eq. (41), the hoop stress on the crack line immediately ahead of the tip of the slender

elliptical crack (x ! 0) is obtained, i.e.,
rð2Þ
22 ¼ �rsðD1 � D3Þ=ðd þ xÞ2: ð43Þ
5. Examples and discussions

The final hoop stress on the crack extension line inside the saturation zone is the sum of Eqs. (28) and

(43), that is r22 ¼ rð1Þ
22 þ rð2Þ

22 . Thus, we obtain
r22 ¼
A1 þ 2D1 � 3D3

d þ x
þ 3

D3

rs

d
d þ x

� dðD1 � D3Þ
ðd þ xÞ2

þ 2
D3

rs
ln
d þ x
rs

; ð44Þ
in which d, D1, D3 and A1 are given in Eqs. (11a), (B.1), (B.3) and (B.8), respectively; and x is the distance

away from the tip of the slender elliptical crack (refer to Fig. 2). The final hoop stress outside the saturation

zone, which is given in Appendix C, can be obtained through performing similar calculations. The cal-

culations consist of three parts, i.e., the stress obtained from the potentials given in Eqs. (26b) and (26d),

the stress given in Eq. (43), and that of linear magnetization already given in Wan et al. (2003c).

The medium inside the slender elliptical crack is generally assumed to be air or vacuum. Thus,

l2=l1 ¼ 1=lr, where lr is the relative permeability of the material. To the best of the authors’ knowledge,
there are only two existing fracture experiments on the soft ferromagnetic materials with a small induction

magnetostrictive modulus, i.e., the soft ferromagnetic alloy steel (Clatterbuck et al., 2000), and the
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manganese–zinc ferrite (Wan et al., 2003b). In this section, the theoretical model of small-scale magnetic

saturation is used to account for the experimental results for these two soft ferromagnetic materials.

(1) Fig. 4 shows the plots of the hoop stress on the crack extension line for these two soft ferromagnetic

materials, in which the symbols h1, h2 and h3 are defined as follows:
Fig. 4.

(l2 ¼
h1 ¼ H1=Hs; h2 ¼ b=a; h3 ¼ l2=l1: ð45Þ
It can be seen that the hoop stress on the crack extension line jumps across the interface between the

cylindrical saturation zone and the outside area. The hoop stress at the tip can be obtained by letting x ¼ 0

in Eq. (44), i.e.,
r22 ¼
A1 þ D1 � 2D3

d
þ D3

rs
3

�
� 2 ln

rs
d

�
; ð46Þ
where rs, d, D1, D3 and A1 are given in Eqs. (3), (11a), (B.1), (B.3) and (B.8), respectively. It is obvious from

Eq. (6) that D1 gradually reduces to )1 and the saturation zone shrinks to the crack-tip when the slender

elliptical crack becomes a sharp crack, i.e., b ¼ 0. Fig. 5 presents the plots of the hoop stress at the tip

against the ratio b=a for these two soft ferromagnetic materials. It can be seen that the hoop stress remains

finite even when the elliptical crack becomes a sharp crack (i.e., b reduces to zero).

(2) One kind of soft ferromagnetic steel (Incoloy 908) had been employed to investigate the effect of

external magnetic field on the apparent fracture toughness (Clatterbuck et al., 2000). The results showed
that the applied magnetic field did not have any measurable effect on the fracture toughness of the fer-

romagnetic steel if experimental errors were taken into account. This phenomenon is evidently in agreement

with the present theoretical result, which shows that the hoop stresses of 0.03 MPa and 0.05 MPa at the tip

of the elliptical crack due to the external magnetic fields of 0:5Hs and 0:8Hs, respectively, are negligible as

compared with the yield stress (1191 MPa) and the ultimate strength (1454 MPa) of the ferromagnetic steel.

By performing three-point-bending tests for the single-edge-beam specimens (Wan et al., 2003b), the au-

thors had previously measured the fracture toughness of the manganese–zinc ferrite ceramic subjected to

magnetic-mechanical loading. With the known fracture loading and the specimen geometry, the nominal
maximum stress of the three-point bending is estimated to be 34 MPa by using the theory of beam bending

for small deformation. It can be seen that the hoop stress at the tip of the slender elliptical crack (See Table

1) is far smaller than the nominal fracture stress. This clearly indicates that the effect of the external

magnetic field on the apparent fracture toughness of the manganese–zinc ferrite ceramics is quite small and

can be neglected.
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Table 1

The hoop stress at the tip of the slender elliptical crack

Geometry of the slender

elliptical crack b=a
Hoop stress at the tip of the slender elliptical crack r22 (MPa)

lr ¼ 2000 lr ¼ 5000 lr ¼ 10; 000

0 )0.459 )0.318 )0.175
0.1 )19.2· 10�5 )69.85· 10�5 )252.7· 10�5
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(3) The hoop stress in Eq. (44) reduces to Eq. (47) for a slit crack (b ¼ 0) if the impermeable model is
adopted, i.e., the permeability of the medium is taken to be zero inside the slender elliptical crack (l2 � 0)
r22 ¼
A1 þ 2D1 � 3D3

x
þ 2

D3

rs
ln
x
rs
; ð47Þ
where x is the distance away from the crack-tip. Obviously, there is a singularity of x�1 for the hoop stress

on the crack extension line. For a central finite crack (Tada et al., 1985), the stress intensity factor (SIF) can

be defined by K ¼ lim
x!0

ffiffiffiffiffiffiffiffiffi
2px

p
r22. The SIF for the impermeable model can be obtained as follows:
K ¼ lim
x!0

ffiffiffiffiffiffi
2p

p
ðA1 þ 2D1 � 3D3Þffiffiffiffi

x
p : ð48Þ
The SIF approaches infinity for a sharp crack, which obviously contradicts with the experimental results.

Therefore, the impermeable model exaggerates the magnetoelastic effects of the magnetic field on soft
ferromagnetic materials and produces results that do not agree with experimental data.
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6. Conclusions

In this paper, a small-scale magnetic-yielding model is developed to determine the stress fields near the

tip of a slender elliptical crack for soft ferromagnetic materials. The magnetic saturation zone is constructed
and the distribution of the magnetic field is estimated. By using the complex potential theory, the hoop

stress is obtained for two soft ferromagnetic materials, which are the soft ferromagnetic steel and the

manganese–zinc ferrite ceramics. The following conclusions can be drawn from the analysis and com-

parison of the theoretical and experimental results:

(1) The hoop stress jumps across the interface of the saturation zone and the linear magnetization area.

The stress remains finite at the tip even when the slender elliptical crack is reduced to a slit crack.

(2) For the soft ferromagnetic materials with a small induction magnetostrictive modulus, such as the soft
ferromagnetic steel and the complex ferrite, the hoop stress obtained using the single-edge-notch-beam

specimen is negligibly small compared to the yield stress of the steel or the nominal fracture stress of the

complex ferrite ceramics. This analysis accounts for the non-obvious effect of magnetic field on the

apparent fracture toughness of the soft ferromagnetic materials.

(3) The impermeable boundary conditions are inappropriate for fracture analysis of soft ferromagnetic

materials. This boundary condition should not be adopted in the theoretical model, i.e., the permeabil-

ity should not be taken as zero even if the inside of the slender elliptical crack is vacuum.
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Appendix A

In the complex potential theory, the displacements and resultant forces in an isotropic, linearly elastic

solid can be represented by two analytic functions /ðzÞ and wðzÞ, where z ¼ r eih, i ¼
ffiffiffiffiffiffiffi
�1

p
. The stresses,

displacements and resultant forces can be expressed as follows:
r22 þ r11

2
¼ /0ðzÞ þ /0ðzÞ; ðA:1Þ

r22 � r11

2
þ ir12 ¼ �z/00ðzÞ þ w0ðzÞ; ðA:2Þ

2Gðu1 þ iu2Þ ¼ ð3� 4mÞ/ðzÞ � z/0ðzÞ � wðzÞ; ðA:3Þ

F1 þ iF2 ¼ �i /ðzÞ
h

þ z/0ðzÞ þ wðzÞ
i
; ðA:4Þ
where ð Þ represents the derivative with respect to the complex variable, z; and ð Þ denotes the complex

conjugate. In the linear magnetization problem (Wan et al., 2003c), the basic governing equations and the

associated boundary condition are:
rca;c þ dI � ðBcBcÞ;a ¼ 0; ðA:5Þ



Y.P. Wan et al. / International Journal of Solids and Structures 41 (2004) 6129–6146 6143
eab ¼
1þ m
E

ðrab � mrccdabÞ þ ðm11 � m21ÞBaBb þ ð1þ mÞm21BcBcdab; ðA:6Þ

eab ¼
1

2
ðua;b þ ub;aÞ; ðA:7Þ
where a, b and c run from 1 to 2. Ba are the components of the magnetic induction vector, and Ba ¼ l0lrHa;

l0 is the permeability of the vacuum and lr the relative permeability of material. E and m are Young’s
modulus and Poisson’s ratio, respectively. m11 and m21 are designated as the induction magnetostrictive

modulus of the matrix material (Wan et al., 2003a). ð�Þ;a denotes the derivative of ð�Þ with respect to the

Cartesian coordinates, xa. The stresses at infinity must be zero and the boundary condition along the

elliptical contour is
nbrab ¼ na½dIIðBcBcÞII � dIðBcBcÞI� ðA:8Þ

and
da ¼
va

l0ð1þ vaÞ
2
ða ¼ I; IIÞ; ðA:9Þ
where v is the magnetic susceptibility. The subscripts I and II denote the matrix outside the ellipse and the

medium in the elliptical flaw, respectively. The displacements and resultant forces on the circle are as

follows:
2Gðu1 þ iu2Þ ¼
ffiffiffiffiffiffiffiffiffi
2ars

p
p1 e

h
2
i

�
þ p2 e�

h
2
i þ p3 e

3h
2
i
�
þ p4 ehi þ p5hi; ðA:10Þ

F1 þ iF2 ¼ �i
ffiffiffiffiffiffiffiffiffi
2ars

p
q1 e

h
2
i

�h
þ q2 e�

h
2
i þ q3 e

3h
2
i
�
þ q4 eh�i þ q5

i
; ðA:11Þ
in which the coefficients are as follows:
p1 ¼
3� 4m

2
ðb

�
þ jD1Þ þ

j
4

1
�

� D2
1

�	
ðl1H

1Þ2; ðA:12Þ

p2 ¼
�
� 1

4
ðbþ jD1Þ þ

j
8
ð1� D2

1Þ þ
G
2
ðm11 � m21Þð1� D2

1Þ
	
ðl1H

1Þ2; ðA:13Þ

p3 ¼
�
� 1

4
ðbþ jD1Þ þ

j
8
ð1� D2

1Þ
	
ðl1H

1Þ2; ðA:14Þ

p4 ¼
j
4
ð1þ D1Þ2aðl1H

1Þ2; ðA:15Þ

p5 ¼ �G
8
ðm11 � m21Þð1þ D1Þ2aðl1H

1Þ2; ðA:16Þ

q1 ¼
1

2
ðb

�
þ jD1Þ �

b
4
ð1� D2

1Þ
	
ðl1H

1Þ2; ðA:17Þ

q2 ¼
1

4
ðb

�
þ jD1Þ �

j
8
ð1� D2

1Þ
	
ðl1H

1Þ2; ðA:18Þ

q3 ¼
1

4
ðb

�
þ jD1Þ �

b
12

ð1� D2
1Þ �

j
24

ð1� D2
1Þ
	
ðl1H

1Þ2; ðA:19Þ
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q4 ¼ � bþ j
8

ð1þ D1Þ2aðl1H
1Þ2; ðA:20Þ

q5 ¼
ffiffiffiffiffiffiffiffiffi
2ars

p �
� ðbþ jD1Þ þ

b
3
ð1� D2

1Þ þ
j
6
ð1� D2

1Þ
	
ðl1H

1Þ2 þ bþ j
8

ð1þ D1Þ2aðl1H
1Þ2; ðA:21Þ
in which the constants and symbols are as follows:
j ¼ S � E0dI
4ðkþ GÞ ; ðA:22Þ

S ¼ 1� ð1þ 2mÞq
4

E0m11; ðA:23Þ

E0 ¼ E
1� m2

; q ¼ �m21

m11

; b ¼ jþ dI; ðA:24Þ

dI ¼
vI

l0ð1þ vIÞ
2
; ðA:25Þ
vI is the magnetic susceptibility, E and m are Young’s modulus and Poisson’s ratio, respectively, m11 and m21

are designated as the induction magnetostrictive moduli of the material.
Appendix B
D1 ¼
p5

4ð1� mÞ �
Grs

4ð1� mÞ ðea � eqÞ; ðB:1Þ

D2 ¼
p4 þ q4
4ð1� mÞ � 2eq

Grs
4ð1� mÞ ; ðB:2Þ

D3 ¼ � Grs
4ð1� mÞ ðea � eqÞ; ðB:3Þ

D4 ¼
p1 þ q1
4ð1� mÞ

ffiffiffiffiffiffiffiffiffi
2ars

p
; ðB:4Þ

D5 ¼
p2 þ q2
4ð1� mÞ

ffiffiffiffiffiffiffiffiffi
2ars

p
; ðB:5Þ

D6 ¼
p3 þ q3
4ð1� mÞ

ffiffiffiffiffiffiffiffiffi
2ars

p
; ðB:6Þ

D7 ¼
q5

4ð1� mÞ � 2eq
Grs

4ð1� mÞ ; ðB:7Þ

A1 ¼
ð3� 2mÞp5
4ð1� mÞ þ ð�3þ 2mÞGrs

4ð1� mÞ ðea � eqÞ; ðB:8Þ
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A2 ¼
ffiffiffiffiffiffiffiffiffi
2ars

p ð�3þ 2mÞp1
4ð1� mÞ

�
þ ð5� 6mÞq1

4ð1� mÞ � 3ðp3 þ q3Þ
8ð1� mÞ

	
; ðB:9Þ

A3 ¼
ffiffiffiffiffiffiffiffiffi
2ars

p ð�3þ 2mÞp3
4ð1� mÞ

�
þ ð5� 6mÞq3

4ð1� mÞ � p1 þ q1
8ð1� mÞ

	
; ðB:10Þ

A4 ¼
ffiffiffiffiffiffiffiffiffi
2ars

p p2 þ q2
8ð1� mÞ ; ðB:11Þ

A5 ¼
ffiffiffiffiffiffiffiffiffi
2ars

p ð�3þ 2mÞp2
4ð1� mÞ

�
þ ð5� 6mÞq2

4ð1� mÞ

	
; ðB:12Þ

A6 ¼
ð�2þ mÞp4
2ð1� mÞ þ ð2� 3mÞq4

2ð1� mÞ þ Grs
7� 4m
4ð1� mÞ eq

�
þ 1

4ð1� mÞ ea
	
; ðB:13Þ

A7 ¼ � p5
4ð1� mÞ þ

Grs
4ð1� mÞ ðea � eqÞ; ðB:14Þ

A8 ¼
ð�1þ mÞGrs
2ð1� mÞ ðea � eqÞ; ðB:15Þ

A9 ¼
ð5� 6mÞq5
4ð1� mÞ þ ð3� 2mÞGrs

4ð1� mÞ 2eq ðB:16Þ
Appendix C

The total hoop stress on the crack extension line outside the cylindrical saturation zone is
r22 ¼
�3D3

xþ rs
� ðD1 þ A1Þrs

xðxþ rsÞ
þ rs

A6 � ðD1 � D3Þ
x2

þ D1rs
ðxþ rsÞ2

þ 1

2
A2

�
þ 1

4
D5

� ffiffiffiffi
rs

p

x
ffiffiffiffi
x

p � 2D3

rs

� ln
x

xþ rs

� �
þ D3x

ðxþ rsÞ2
� 3

2
A3

rs
ffiffiffiffi
rs

p

x2
ffiffiffiffi
x

p þ 5

2
A4

r2s
ffiffiffiffi
rs

p

x3
ffiffiffiffi
x

p þ 2A7

r2s
x3

� A8

r2s
x3

1

�
� ln

x
rs

� �	
: ðC:1Þ
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